

MANUAL DO USUÁRIO

ÍNDICE

Assunto	Página
Apresentação	2
Observações gerais sobre o software	2
Formas de trabalho	3
Fluxo das informações	4
Laje isolada	4
Geometria	6
Vinculação	6
Cargas	7
Configuração	8
Resultados	10
Impressão	13
Cálculo da obra	16
Exemplo de obra	18

1.- APRESENTAÇÃO

Este Manual destina-se a auxiliar aos usuários do programa para o Cálculo de Lajes Retangulares de Concreto Armado no seu uso.

Foi produzido apresentando a seqüência usual de fornecimento de informações e uso de comandos que são utilizadas cotidianamente pelos interessados em calcular e dimensionar lajes retangulares de concreto armado usando armaduras em telas soldadas.

2.- OBSERVAÇÕES GERAIS SOBRE O SOFTWARE

				Versão 2.02 - De	e acordo com a	NBR6118:200
Obra	Laje isolada	Vinculação	Cargas	Configuração	Resultados	Observações
2. As fór Mesegue	mulas utilizadas r r, Montoya e Mor	ieste software fo án, 8ª edição.	ram extraídas	do livro "HORMIC	SÓN ARMADO"	de
2. As fór Mesegue	mulas utilizadas r r, Montoya e Mor	ieste software fo án, 8ª edição.	ram extraídas	do livro "HORMIC	SÓN ARMADO"	de
3. O cálo NBR6118	ulo de momentos :2003 "Projeto de	e o dimensionar Estruturas de C	mento das arn concreto - Proc	naduras está ada redimento".	otado aos prec	eitos da
4. Os res interpret	sultados apresent ação e das premi	ados neste softw ssas adotadas pe	are estão suj elos usuários.	eitos a variações Nem os autores o	em função da leste software	forma de nem os

Uma vez completada a instalação do software, aparecerá a tela da Figura 1 abaixo que apresenta as informações necessárias para o

correto uso do programa e o entendimento de suas limitações e pressupostos. Dentre as principais observações, salienta-se nesta tela aquela que afirma que o resultado do dimensionamento das lajes de concreto armado é muito dependente das hipóteses adotadas pelo projetista.

Dada a importância que as hipóteses de cálculo apresentam e sua enorme influência sobre os resultados, fica patente a necessidade de que o projetista verifique sempre os valores adotados bem como certifique-se da validade dos resultados antes de qualquer utilização dos mesmos em obras reais.

Com base no que foi exposto acima, ressalta-se aqui mais uma vez que: "Nem os distribuidores nem os autores deste software fornecem qualquer garantia quanto à exatidão de seus resultados".

3.- FORMAS DE TRABALHO

O software pode ser utilizado de duas formas: ou no cálculo de lajes retangulares isoladas ou no cálculo de lajes de pavimentos de obras. A única diferença entre as duas formas de trabalho é na apresentação dos resultados.

Os resultados do cálculo de uma laje isolada são apresentados em folhas individuais, ou seja: é impressa uma laje por folha. Os resultados do cálculo das lajes de um pavimento são apresentados sob a forma de uma planilha, com até 20 lajes por página.

Tanto num caso como no outro, tanto a entrada de dados como o cálculo propriamente dito é realizado sob a forma de lajes isoladas, o que muda é unicamente, como dissemos acima, é o método de impressão dos resultados.

4.- FLUXO DAS INFORMAÇÕES

As informações necessárias ao cálculo das lajes são fornecidas na mesma ordem lógica que serão utilizadas:

- 1. Geometria lado maior, lado menor, espessura e altura útil
- 2. **Vinculações** condições de continuidade dos lados: engastes perfeitos ou apoios simples
- 3. **Cargas** composição das cargas distribuídas que agem sobre as lajes
- Configurações método de cálculo, unidades, armaduras de distribuição, materiais, cobrimento, tolerâncias e relação entre Mb e Ma no Método das Linhas de Ruptura

A partir dos dados fornecidos, a laje é automaticamente calculada e os resultados usuais: momentos fletores, reações, armaduras necessárias e telas soldadas escolhidas ficam disponibilizados ao usuário.

5.- LAJE I SOLADA

Vamos começar explicando o cálculo de uma laje retangular isolada de concreto armado. A Figura 2 abaixo apresenta a tela onde devemos clicar na guia "Laje isolada" para começar o seu cálculo.

Ao clicar será exibida a tela de entrada da geometria da laje, com os espaços para o fornecimento dos valores dos lados maior e menor (usualmente fornecemos os valores efetivos, obtidos através da aplicação dos critérios do item 14.7.2.2 e Figura 14.5 da NBR6118:2003)

Cálculo de Lajes Retang	ulares de Concreto Armado Instituto Brasileiro de Telas Soldadas Cálculo de Lajes Retangulares de Concreto Armado
Obra Laje	Versão 2.02 - De acordo com a N8R6118:2003 > isolada Vinculação Cargas Configuração Resultados Observações
	Lado menor (a) 3,5 m
	Lado maior (b) 5 m Altura total (h) 12 cm
	Altura util (d) 9,5 cm
Manual do Usuário	<u>F</u> echar

A tela sempre repete, numa mesma sessão, os últimos valores preenchidos para as variáveis que compõem a tela em questão. Os valores acima são aqueles que aparecem quando o programa é utilizado pela primeira vez.

A altura útil é determinada diminuindo da altura total a soma do valor do cobrimento das armaduras com 0,5 cm.

Vamos calcular como exemplo uma laje retangular de concreto armado com 4,2 m x 6,1 m, com 12 cm de altura total e 9,5 cm de altura útil, engastada em dois lados adjacentes com uma carga acidental de 150 kgf/m², revestimento de 100 kgf/m² e um enchimento de 100kgf/m². O cobrimento será de 2,0 cm e o fck de 25 MPa. Os demais dados serão definidos na medida em que se façam necessários.

A seqüência de telas que será utilizada para o fornecimento das informações é ilustrada abaixo.

Geometria

Lado menor (a) 4,2 m
Lado maior (b) 6,1 m
Altura total (h) 12 cm
Altura útil (d) 9,5 cm

Vinculação

Uma vez clicada a guia de **Vinculação** devemos definir as vinculações dos lados da laje. As únicas vinculações admissíveis são **apoio simples** ou **engaste perfeito**.

Os vínculos são ativados clicando nas correspondentes opções. Os vínculos podem ser alterados a qualquer momento, permitindo de forma muito fácil fazer quantas comparações de resultados e consumos se queira.

Cargas

Peso próprio	300	kgf/m²
Revestimento	100	kgf/m²
Carga ac <mark>i</mark> dental	150	kgf/m²
Outras	100	kgf/m²
Total	650	kgf/m²

O peso próprio é calculado automaticamente pelo programa e <u>não pode ser editado</u>. Todas as demais cargas são inseridas diretamente nos respectivos campos pelo usuário, podendo ser alteradas a qualquer momento. Feita qualquer alteração, é só clicar na guia **Resultados** e a laje é automaticamente recalculada com os valores atualizados.

Vale lembrar que os valores das cargas acidentais mínimas a serem consideradas devem obedecer à NBR 6120/80 – Cargas para o cálculo de edificações.

Configuração

A guia **Configuração** habilita a tela abaixo, onde informamos ao programa quais os dados e parâmetros que deverão ser utilizados no cálculo e dimensionamento das lajes de concreto armado.

Obra	Laje isolada	Vinculação	Cargas	Configuraçã	o Resultados	Observações
Método d O Elásti	e cálculo co	e ruptura	Unidade de fo O kN	e kgf	Cobrimento nomina	al
Armadura	mínima (cm²/m) Conforme Tabela	17.3 e 19.1 da	NBR6118:200	3	olerância na scolha das Telas definir Ø = Mb/M	3 🕶 %
Armadura	de distribuição			F	lelação entre lado	os O
	0,20 As principa	1	🔿 0,25 As princij	pal	- a/b 冬 □	0,55 0,3
				[0,55 < a/b 冬	0,7 0,5
Materiais	-				0,7 <a %<="" b="" td=""><td>0,85 0,75</td>	0,85 0,75
	25	▼ MP>		o [0.85 <a b<="" td=""><td>1</td>	1

A primeira informação é o Método de cálculo a ser utilizado para a determinação dos momentos fletores atuantes na laje: podemos escolher entre o Método Elástico e o Método das Linhas de Ruptura.

A segunda informação é a **Unidade de força** a ser utilizada: ou o **kgf** (Sistema Técnico) ou o **kN** (Sistema Internacional). Cabe lembrar que, dentre as duas, a unidade legal no Brasil é o **kN**.

MANUAL DO USUÁRIO

A próxima informação é o **Cobrimento nominal** a ser utilizado. O valor do cobrimento depende de diversos fatores, entre os quais podemos citar a agressividade do ambiente onde a laje será executada, o seu revestimento, etc. O valor do cobrimento nominal deve obedecer ao item **7.4** e à **Tabela 6.1** e à **Tabela 7.2** da **NBR 6118:2003 Projeto de estruturas de concreto – Procedimento**. O valor do cobrimento, em milímetros, é colocado diretamente pelo usuário no correspondente campo da tela

A Armadura de distribuição para lajes armadas em uma direção pode também ser escolhida, optando-se diretamente na tela entre o valor de 20% da armadura principal (que atende à **Tabela 19.1** da **NBR 6118:2003**) ou adotando um valor maior, de 25% desta armadura principal.

A Tolerância na escolha das telas representa a diferença porcentual que o usuário admite como aceitável entre a área de armadura teoricamente necessária e o valor escolhido na tabela de telas soldadas. Assim, numa laje em que a área de armadura teoricamente necessária seja de 3,40 cm²/m, precisaríamos trabalhar com uma tela da família 396. Escolhendo uma tolerância de 3%, o programa aceitará como válida uma solução em tela soldada que apresente uma área de aço de 3,40 x 0,97 = 3,30 cm², ou seja, pode-se adotar uma tela da família 335. A tolerância pode ser definida entre 0% e 5%.

No campo dos **Materiais** será definido o valor do fck, escolhido entre 20 MPa e 35 MPa. Como pode ser visto na figura, o aço que será utilizado será sempre o CA60.

O último parâmetro a ser informado é o Valor de ϕ , que é a relação arbitrária entre os momentos nas duas direções (Ma/Mb) para lajes armadas pelo Método das Linhas de Ruptura. Os valores indicados na figura acima representam um conjunto usual de parâmetros para faixas indicadas de relações entre os lados. Este conjunto poderá ser arbitrariamente alterado pelo usuário diretamente nos campos numéricos da tabela, tanto no que tange aos limites de relações entre os lados como os próprios valores de ϕ .

Em nosso exemplo adotaremos os valores default, com exceção do fck, que adotaremos como sendo 25 MPa.

Resultados

Ao clicar na guia **Resultados** aparece a tela abaixo, onde estão listados todos os resultados que podem ser obtidos com o programa. Inicialmente vem marcado o campo *Lados e Vinculação*, o que faz com que sempre seja possível conferir se os lados e os vínculos da laje calculada estão corretos.

Como podemos ver, a laje que foi calculada coincide com o que queríamos calcular, tanto nos lados maior e menor como na vinculação.

Os resultados que serão apresentados obedecem à ordem em que usualmente são necessários: *Reações de apoio*, *Momentos fletores*, *Armaduras necessárias* e *Telas selecionadas*.

Clicando em *Reações de apoio*, aparecem as reações de apoio sobre os quatro lados da laje:

Clicando subseqüentemente nos demais resultados, as telas que aparecerão são as seguintes:

É conveniente que se façam algumas observações obre as telas de **Resultados**:

- A laje é sempre calculada, ou recalculada, toda a vez em que se clica na guia **Resultados**;
- O desenho esquemático da laje (um retângulo em linhas verdes) não está em escala, servindo apenas para identificar os lados menores e os lados maiores;
- As armaduras apresentadas, tanto nas Telas soldadas como em barras soltas, são consideradas sempre em aço CA60
- Os resultados que aparecem são sempre coerentes com as unidades selecionadas;
- Para modificar algum dado, basta clicar na guia correspondente ao dado que se quer mudar e introduzir a modificação pretendida; quando clicarmos novamente na guia **Resultados**, o que aparecerá na tela será o cálculo da laje já com os novos dados

O programa não armazena os dados e os resultados das lajes. Caso o usuário queira guardar os dados e resultados de uma laje, deve clicar no botão **Imprimir** que aparece no canto superior direito da guia **Resultados** (veja figura abaixo). Uma vez alterados os dados da laje ou fechado o programa, será necessário reinserir os dados para conseguir imprimir o cálculo da laje.

C	1135 kgf/m	
	r	1
O Momentos fletores		
O Armaduras necessárias 500 kgf/m		865 kgf/m
🔿 Telas selecionadas		
○ Lados e vinculação	L	
	655 kgf/m	

Impressão

Uma vez clicado o botão **Imprimir** o programa solicitará os dados de identificação da laje e do projetista para preencher o cabeçalho da folha de impressão:

Projetista	Eng ^e João	
Nome da obra	Edifício Belvedere Sul	
Pavimento	Térreo	
Nome da laje	[L1	

Nas próximas lajes a serem impressas o programa repetirá os dados de identificação da última laje impressa. Assim, se o usuário quiser calcular mais de uma laje no mesmo pavimento do mesmo prédio somente precisará trocar o nome da laje. O nome da laje pode ser qualquer combinação alfanumérica com até 20 caracteres.

A folha impressa tem a seguinte apresentação:

MANUAL DO USUÁRIO

-iblis-	Instituto Brasilei Cálculo de Lajes Retangulare	ro de T s de Conci	Telas So reto Armado	V 2.02	
	Data: 27/08/2008				
Projetista:	Engo loão				
Obra:	Edifício Belvedere Sul				
Pavimento:	Térreo				
Nome da laje:	L1				
Geometria e vi	nculações				
1.00		h:	12cm		
4,2m		d:	9,5cm		
	6,1m				
Cargas					
Peso próprio	300 kgf/m ²				
Revestimento	100 kgf/m ²				
Carga acidental	150 kgf/m ²				
Outras	100 kgf/m ²				
TOTAL	650 kgf/m²				
Método de cálculo:	Linhas de Ruptura			Mb/Ma = 0,5	
Armadura de distrib	ouição: 20% da As Principal.				
fck= 25 MPa					
Aço CA 60					
Resultados					
Reações				Mom	entos
Lado maior engasta	ado: 1135 kgf/m			Ma=	500 kgf.m/m
Lado maior apoiado	: 655 kgf/m			Xa=	-749 kgf.m/m
Lado menor engast	ado: 865 kgf/m			Mb=	250 kgf.m/m
Lado menor apoiad	o: 500 kgf/m			Xb=	-375 kgf.m/m
Armaduras nece	ssárias			Telas selecio	nadas
AsMa: 1,44 cm ² /m				Positiva: Q159	
AsXa: 2,2 cm ² /m				Negativa sobre	o lado menor: T196
AsMb: 1,2 cm ² /m				Negativa sobre	o lado maior: T246
AsXb : 1,8 cm²/m					

* Os resultados acima são válidos conforme as OBSERVAÇÕES apresentadas na tela inicial do sistema. *

Nesta folha aparecem todos os dados de materiais, geometria e critérios de cálculo da laje bem como todos os resultados do cálculo. A convenção adotada é a usual em nosso meio:

Ma = momento positivo (traciona as fibras inferiores da laje) paralelo à menor dimensão da laje. É o momento que deverá ser resistido pela armadura inferior paralela à menor dimensão da laje.

Xa = momento negativo (traciona as fibras superiores da laje) paralelo à menor dimensão da laje. É o momento que deverá ser resistido pela armadura superior paralela à menor dimensão da laje colocada sobre o apoio no(s) lado(s) maior(es) da laje.

Mb = momento positivo (traciona as fibras inferiores da laje) paralelo à maior dimensão da laje. É o momento que deverá ser resistido pela armadura inferior paralela à maior dimensão da laje.

Xb = momento negativo (traciona as fibras superiores da laje) paralelo à maior dimensão da laje. É o momento que deverá ser resistido pela armadura superior paralela à maior dimensão da laje colocada sobre o apoio no(s) lado(s) menor(es) da laje.

AsMa = armadura inferior paralela à menor dimensão da laje, que deverá resistir ao momento **Ma**.

AsXa = armadura superior paralela à menor dimensão da laje, que deverá resistir ao momento **Xa**.

AsMb = armadura inferior paralela à maior dimensão da laje, que deverá resistir ao momento **Mb**.

AsXb = armadura superior paralela à maior dimensão da laje, que deverá resistir ao momento **Xb**.

A impressão é feita clicando-se no botão no canto superior esquerdo da página com a visualização da impressão.

MANUAL DO USUÁRIO

6.- CÁLCULO DE OBRA

Uma obra é definida como um conjunto de um ou mais pavimentos compostos, cada um deles, de várias lajes isoladas. As principais vantagens no uso da obra como método de trabalho consistem em que a saída dos resultados é apresentada na forma usual de tabela e que ela fica automaticamente armazenada, o que facilita a análise e a apresentação dos resultados do cálculo.

O processo de cálculo das diversas lajes que compõem um pavimento de uma obra é exatamente igual ao de uma laje isolada, seguindo a mesma ordem de introdução.

Os dados da obra são armazenados pelo programa e podem ser editados quando desejado.

A principal diferença no processo advém do fato de ser necessária a criação da obra e a informação ordenada de seus dados básicos. Isto é conseguido através dos comandos para a criação e gravação da obra, como ilustrado abaixo.

Esta é a tela que fica disponibilizada quando é clicada a guia **Obra**.

MANUAL DO USUÁRIO

Obre	ai Laje isolac	la Vinculação	Cargas	/ersão 2.02 - De a Configuração	acordo com a Resultados	NBR6118:200 Observações
	Nova obra	Gravar obra	Localizar obra	Excluir obra	Sair da	obra
	Nome da obra 🛛 🗍 Endereço 🕅 🖓 Projetista 🗖					
	Pavimentos Pavimento			s Laje		

Os botões acima do formulário são auto-explicativos, servindo para:

- Criar uma obra (*Nova obra*)
- Gravar a obra (*Gravar obra*)
- Localizar uma obra já gravada (Localizar obra)
- Eliminar uma obra já gravada (*Excluir obra*) e
- Terminar uma seção de trabalho com uma obra (Sair da obra).

Ao clicar o botão **Nova obra** fica disponibilizada a seguinte tela:

MANUAL DO USUÁRIO

7.- Exemplo de Obra

Fonderecco	Edifício Belvedere Norte		
Projetista	Englucia		
	1-12		
Pavimentos	G		
Pavime	nto	Laje	

Uma vez inseridos os dados da obra (nome, endereço e projetista), devemos gravar a obra para então podermos criar os pavimentos existentes.

Endereco	Edincio Belvedere Norte Bua Miosótic 346
Projetista	Eng ^e João
Pavimentos Pavim	ento

Se tentarmos criar um pavimento antes de gravar a obra aparecerá o seguinte lembrete:

MANUAL DO USUÁRIO

<u> </u>
ecione obra.
ок

Após gravar a obra clicando no correspondente botão, estamos prontos para criar os seus pavimentos, clicando no botão Novo, como mostra a figura abaixo. O botão com um **X** ao lado do botão **Novo** serve para excluir um pavimento já gravado.

ndereco	Editicio Belvedere Norte
Projetista	
Pavimentos	
Pavime	nto

Após informar o nome do pavimento devemos gravá-lo, clicando no botão **Gravar**, como mostrado na figura abaixo.

MANUAL DO USUÁRIO

Indorana		
Indeleço	Hua Miosòtis, 346	
Projetista	Engº João	
Pavimer F Pav	e do pavimento	

Uma vez gravado o pavimento, este é mostrado numa lista e este pavimento já fica automaticamente selecionado para permitir a entrada das suas lajes, como pode ser visto na figura abaixo:

Endereço	Rua Miosótis, 346	
rojetista	Engº João	
Pavimentos		Ę ×
Pavime	nto Tipo 1	

Clicando, como mostrado na figura, em nova laje, é possível começar a definir as lajes. A cada nova laje criada aparece uma tela que pede o nome da laje e, a partir daí, a introdução dos dados segue o mesmo procedimento do fornecimento de dados da laje isolada.

Endereço	Rua Miosótis, 346
^o rojetista	Eng ^e João
Pavimentos Pavime Pavime	ento Tipo 1

No exemplo acima será criada a L1. Ao clicar em **Ok** aparece imediatamente a tela abaixo, que é a mesma de fornecimento dos lados da laje isolada.

Obra	j Geometria	Vinculação 🍸	Cargas	Configuração	Resultados	Observaçõe:
		Lado n	nenor (a)	m		
		Lado n	naior (b)	m		
		Altura	total (h)	cm		
		Altura	útil (d)	cm		
				N		

A partir deste ponto, o procedimento de introdução dos dados da laje é exatamente o mesmo que vimos para a laje isolada.

Vamos imaginar que o Pavimento Tipo 1 da obra Edifício Belvedere Norte seja composto pelas 3 lajes abaixo, todas com 13 cm de espessura, revestimento de 1,00 kN/m², carga acidental de 1,50 kN/m². Será considerada uma carga adicional de 1,00 kN/m² somente nas lajes L2 e L3. O fck será de 35 MPa e o cobrimento foi adotado como sendo de 20 mm.

MANUAL DO USUÁRIO

As lajes L1 e L2 serão calculadas pelo Método Elástico e a L3 pelo Método das Linhas de Ruptura.

Começando pela L1, teremos a seguinte seqüência de telas:

Os demais parâmetros de configuração aparecem na tela abaixo, representando o caso da L1:

				Versão 2.02 - De	acordo com a	NBR6118:20
Obra	Geometria	Vinculação	Cargas	Configuração	Resultados	Observaçõ
Método de	cálculo o O Linhas de	ruptura	Unidade de fo © RN	rça Cob O kgi	orimento nomina 20 r	l nm
Armadura (nínima (cm²/m) onforme Tabela ⁻	17.3 e 19.1 da	a NBR6118:200	3 Tole esco	rância na olha das Telas	3 🗙 %
Armadura	de distribuição		O 0,25 As princi	pal		
Materiais Concrete	p: fck 35	MPa	Aço CA 6	D		

Como o cálculo será feito pelo Método Elástico, não existe sentido em aparecer a tabela dos valores de ϕ .

Clicando em **Resultados**, obteremos a seguinte tela, perfazendo um processo em tudo semelhante ao da laje isolada:

MANUAL DO USUÁRIO

Clicando nas diversas opções teremos, sucessivamente:

Vale lembrar que as definições das telas aparecem quando se desliza o cursor sobre ao caixa com o nome da tela soldada.

É importante lembrar que os valores da planilha são automaticamente gravados quando se clica na guia **Resultados**.

Clicando agora no botão **Planilha**, no canto superior da guia **Resultados**, aparece a visualização da tela de saída com a planilha de cálculo das lajes do *Pavimento Tipo 1*:

-iij			INST: Cálcul Data:	D de Lajes 19/1/200	RASILEI Retangula 19	RO DE 1 ares de Co	TELAS (oncreto A	SOLDADA Armado	AS V 2.02								
Obra: Cobrim	Edifício I nento:	Belvede 20 mm	re Nort	e					Pavimento:	Pavimento Tipo	1		fck :	35 MPa			
Unidad	des: lado:	semm,	espess	ura em cri	, cargas e	m kN/m²,	moment	os fletores	em kN.m/m, rea	ações em kN/m e	armaduras	em cm²/m (CA 6	0)				
Laje	Vinc.	a	Ь	Esp	PP	Rev.	Acid.	Outras	Ma/AsMa	Xa/ASXa	TelaXa	Mb/AsMb	Tela Positiva	Xb/ASXb	TelaXb	Ra/Rae	Rb/Rbe
*L1	AA-ee	4,23	8	13	3,3	1	1,5	- X -	8,08/2,11	- X -	- X -	3,77/1,46	R246	12/3,18	T335	1053/1053	659/659

Dividindo a planilha para melhor explicar a impressão, teremos:

INSTITUTO BRASILEIRO DE TELAS SOLDADA

Cálculo de Lajes Retangulares de Concreto Armado Data: 19/1/2009

Obra: Edifício Belvedere Norte Cobrimento: 20 mm

Unidades: lados em m, espessura em cm, cargas em kN/m², momentos fletores ei

Laje	Vinc.	а	Ь	Esp	PP	Rev.	Acid.	Outras
*L1	AA-ee	4,23	8	13	3,3	1	1,5	- X -

O asterisco antes do nome da Laje L1 indica que a laje foi calculada pelo Método elástico.

A Vinculação é identificada por duas letras maiúsculas e duas letras minúsculas. Se uma letra maiúscula for **A**, então um lado maior é **A**poiado, se uma letra maiúscula for **E**, então um lado maior é **E**ngastado. Se as letras forem duas minúsculas (**AA**) ou duas maiúsculas (**EE**), a laje apresentará, respectivamente, os dois lados maiores **A**poiados ou **E**ngastados.

Se as letras forem uma de cada (**AE** ou **EA**), isto quer dizer que a laje apresenta um lado maior **E**ngastado e o outro **A**poiado. Mutatis mutandi, o mesmo raciocínio vale para os lados menores.

As dimensões da laje são os valores de **a** e **b**, em m. **Esp** é o valor da espessura da laje em cm. **PP**, **Ver**, **Acid** e **Outras** são, respectivamente, os valores dos carregamentos devidos ao peso próprio, revestimento, carga acidental e outras cargas.

Vamos analisar agora o restante da planilha:

)AS V 2.02

Pavimento: Pavimento Tipo 1

fck:35 MPa

s em kN.m/m, reações em kN/m e armaduras em cm²/m (CA 60)

22	Ma/AsMa	Xa/ASXa	TelaXa	Mb/AsMb	Tela Positiva	Xb/ASXb	TelaXb	Ra/Rae	Rb/Rbe
	8,08/2,11	- X -	- X -	3,77/1,46	R246	12/3,18	T335	1053/1053	659/659

Ma/AsMa apresentam o valor do Momento Fletor positivo paralelo à menor dimensão da laje e a armadura inferior necessária para resistir a este Momento Fletor.

Xa/AsXa apresentam o valor do Momento Fletor negativo paralelo à menor dimensão da laje e a armadura superior necessária para resistir a este Momento Fletor <u>caso exista lado maior engastado</u>.

TelaXa é a tela soldada sugerida como a solução mais econômica para a armadura que resistirá a **Xa**, <u>caso exista lado</u> <u>maior engastado</u>.

Mb/AsMb apresentam o valor do Momento Fletor positivo paralelo à maior dimensão da laje e a armadura inferior necessária para resistir a este Momento Fletor.

Tela positiva é a tela soldada sugerida como a solução mais econômica para funcionar como a armadura que resistirá simultaneamente a **Ma** e **Mb**.

MANUAL DO USUÁRIO

Xb/AsXb apresentam o valor do Momento Fletor negativo paralelo à maior dimensão da laje e a armadura superior necessária para resistir a este Momento Fletor<u>caso exista lado menor</u> <u>engastado</u>.

TelaXb é a tela soldada sugerida como a solução mais econômica para a armadura que resistirá a **Xb**, <u>caso exista lado</u> <u>menor engastado</u>.

Ra/Rae são, respectivamente, as reações uniformemente distribuídas sobre os lados menores. Quando as vinculações forem iguais os dois valores de reação serão iguais; quando as vinculações forem diferentes o valor **Ra** corresponde à reação sobre o lado menor apoiado e **Rae** corresponde à reação sobre o lado menor engastado.

Rb/Rbe são, respectivamente, as reações uniformemente distribuídas sobre os lados maiores. Quando as vinculações forem iguais os dois valores de reação serão iguais; quando as vinculações forem diferentes o valor **Rb** corresponde à reação sobre o lado maior <u>apoiado</u> e **Rbe** corresponde à reação sobre o lado maior <u>engastado</u>.

As unidades e convenções estão explicadas no cabeçalho da planilha.

Podemos agora repetir o processo para calcular as lajes L2 e L3, lembrando que para elas existe uma carga **Outra** com o valor de 1,0 kN/m² e que a L3 será calculada pelo Método das Linhas de Ruptura.

 Pavimento	 Nome da laje	12 X
Pavimento Tipo 1		
	Ok Cancela	7
		9
		>

Iniciamos criando a L2:

MANUAL DO USUÁRIO

Sempre que quisermos ver os dados de uma laje, basta selecioná-la e clicar no botão Ler laje selecionada.

Clica-se em nova laje e insere-se o nome da Laje e depois **Ok**. A seguir inserimos as dimensões da L2:

Lado menor (a)	3,88	m
Lado maior (b)	6,75	m
Altura total (h)	13	cm
Altura útil (d)	10.5	cm

Em seguida informamos a vinculação da L2 e em seguida o seu carregamento, com a carga **Outras**:

	C Apoio					
● Engaste C Apoio		C Engas	ste		○ Engaste ● Apoio	
	Peso próprio		3.3	kN/m²		
	Revestimento	, [1	kN/m²		
	Carga acidental		1,5	kN/m²		
	Uutras Total		1 6,8	kN/m² kN/m²	ر	

Clicando em **Resultados** é feito o cálculo e o dimensionamento e, simultaneamente, a gravação da laje L2.

Para a L3, repete-se o procedimento. Como esta laje deve ser calculada pelo Método das Linhas de Ruptura, devemos informar isto ao software através da guia **Configuração**:

				Versão 2.02 - [)e acordo com a	NBR6118:20
Obra	Geometria	Vinculação	↓ Cargas	Configuração	Resultados	Observaçõe
C Elástic	o • Linhas de	ruptura	© KN		20 T	nm
C	onforme Tabela 1	7.3 e 19.1 da	NBR6118:200	3	colha das Telas sinir (0 = Mb/Ma	3 🗾 %
Armadura de distribuição © 0,20 As principal			C 0,25 As principal		elação entre lado: a/b < \	s Φ 1,55 0,3
Materiais Concreto	: fck 35	MPa	Aço CA 6),55 < a/b < (0,7 < a/b < 0),85 < a/b),7 0,5 ,85 0,75 1

Se quiséssemos poderíamos ainda alterar, nesta mesma tela, a relação entre o valor do coeficiente ϕ e a relação entre os lados da laje.

Vale a pena lembrar que o cálculo da laje soe armazenado ao se clicar na guia **Resultados**.

Uma vez calculada a L3, podemos visualizar a planilha da página seguinte com os dados de todas as lajes do **Pavimento Tipo1** do **Edifício Belvedere Norte**.

		-	-
Rb/Rbe	659/659	1183/683	887/887
Ra/Rae	1053/1053	479/830	844/1461
TelaXb	T246	T246	T246
Xb/ASXb	3,47/2,18	3,64/2,18	7,78/2,18
Tela Positiva	Q196	Q159	R283
Mb/AsMb	2,32/1,46	2,43/1,46	5,19/1,46
TelaXa	- X -	T246	- X -
Xa/ASXa	- X -	7,28/2,18	- X -
Ma/AsMa	7,72/2,01	4,86/1,46	10,37/2,73
Outras	- X -	J	,
Acid.	1,5	1,5	1,5
Rev.		I	F
đđ	3,3	3,3	3,3
Esp	13	13	13
q	8	6,75	7,2
ø	4,23	3,88	5
Vinc.	AA-ee	EA-ea	AA-ea
Laje	11*	*L2	EJ

fck : 35 MPa

Pavimento: Pavimento Tipo 1

Obra: Edifício Belvedere Norte 20 mm

Cobrimento:

INSTITUTO BRASILEIRO DE TELAS SOLDADAS Cálculo de Lajes Retangulares de Concreto Armado V 2.02 Data: 19/1/2009

Unidades: lados em m, espessura em cm, cargas em KN/m2, momentos fletores em KN.m/m, reacões em kN/m e armaduras em cm2/m (CA 60)